
N89 - 1007 4

A Local Area Computer Network

Expert System Framework

Robert Dominy/Code 522.1

NASA Goddard Space Flight Center
Greenbelt, MD 20771

!

/

/

/

Abstract

Over the past year I have been developing an expert system called LANES designed to detect and isolate

faults in the Goddard-wide Hybrid Local Area Computer Network (LACN). As a result, the need for

developing a more generic LACN fauh isolation expert system has become apparent. This paper explores

an object oriented approach to create a set of generic classes, objects, rules, and methods that would be

necessary to meet this need. The object classes provide a convenient mechanism for separating high level

information from low level network specific information. This approach yields a framework which can be

applied to different network configurations and be easily expanded to meet new needs.

Introduction

A hybrid local area computer network (LACN)

connects a variety of computers, ranging from
mainframes to micros, throughout several

buildings of the Goddard Space Flight Center.
The network is based primarily on an Ethernet

bus topology (Figure 1) but a star configuration
using the Cable TV (CATV) wiring and Applitek

equipment allows networks in different buildings
to be interconnected.

As this network grows, it becomes more and

more difficult to detect and isolate problems.

Currently operators do a small amount of

network checking manually, but to do a thorough
check of the entire network is tedious because of

the large number of items involved. As a result,

most fault isolation takes place after a user has

discovered and reported a problem.

The Local Area Network Expert System

(LANES) began in 1985 as an effort to automate
the process of fault detection and isolation.

Development work is being performed on a

Symbolics 3645 LISP machine using an expert

Transcelvere Brld ge Bo it Network Repeater r. m,_.. _,,_.

1\ ___._1 _ L_

-- \=7 -
Computers App Illill

Figure 1 -- Portion of Goddard LACN



system development tool, the Automated

Reasoning Tool (ART) from Inference Corp. An

operationally useful prototype has been
completed and is available for demonstration and
USC.

The LANES screen is depicted in Figure 2. Each

network is depicted graphically and a global map
of Goddard Space Flight Center that shows

connections between buildings (Figure 3) can be
reached by clicking on the window connection

icon (the upward arrow) labeled Map. To tell the
system to begin checking the entire network a

user clicks on the START button by positioning
the mouse cursor over the START button and

pressing the left mouse button. The button

changes to STOP. The expert system heuristic

rules then attempt to detect and isolate problems
in the network. Results are displayed with text

and graphics. For example, in Figure 2 the

Bridge box CS1-D cannot be reached (an X is

placed in the box) and the Bridge box CS I-B has

a high statistical CRC (cycle redundancy check)

error count (a question mark is placed in the
box).

LANES checks each device on each network,

repeatedly cycling through all the networks, until
the user clicks on STOP. As each network is

checked, the window being viewed will
automatically be changed if the current network

is on a different screen and the Switch Screens

button is set. At any time the user can edit the

network design using NetEdit, an interactive

graphical network editor. Devices can be added,

moved, modified, or removed. The changes are
reflected immediately by the expert system and

can be used temporarily or saved to a permanent

OIta Systems Technology L.aboratory

In

CS1 -O

Edil _dds
Move

Change Connect
Remove

Figure 2 --LANES Screen

Goddlbrd SIIIICll FIl_k_ Cowl:or

Figure 3 -- Map of Goddard



ExpertSystem

t-_e.

Connectivity Algorithms

Object-Oriented Database
and Graphical Editor

Figure 4 -- Framework Layers

The current version of LANES checks networks

located in five different buildings. It gets the up/

down status and health statistics of seventeen

bridge boxes, gets the up/down status of ten

VAX computers, and derives the status of five

Applitek devices.

framework. To build a framework that is

reusable, highly modular, and easily modifiable

will require the base programming language to

provideobject-orientedfeatures such as dynamic

bindingof functions(methods)todata(objects),

inheritableobject and methods, and object

abstraction. A number of object-oriented

languagesprovideallofthesefeatures.l

Object-Oriented Framework

Demonstrating LANES has generated interest
within Goddard and at other NASA centers.

However, because LANES has been designed

specifically for the Goddard LACN much of the
code that was developed would have little

application to other LACNs. In addition, a
number of functions and rules within LANES are

replicated for similar object types. For example
two rules which get the status of an object may

only differ by the function which they invoke.

This not only duplicates code and effort, but also

makes global changes more difficult to make.

Improved knowledge abstraction with increased

modularity and ease of modification are being

added to help solve these problems.

The next step in the evolution of LANES is to

build a generalized LACN expert system

Framework Layers

Conceptually the framework is composed of three

primary layers (Figure 4), an object-oriented
database and graphical editor, a set of

connectivity algorithms, and the expert system.

This concept allows the lower layers to be fully
reusable without the upper layers, but not the

reverse since the expert system would need both

the database and connectivity layers to function.

The object-oriented database and graphical editor

are key elements of the system. The editor

provides the main portion of the user interface
with which users will create, modify, and add to
networks. The database defines the relationship

between network components and keeps track of

component attributes such as network addresses

and protocols.

1. In the computer science field, object-oriented programming is gaining popularity as a software
engineering methodology and programming style. The reason for this is that object-oriented
programming excels in software reusability, modularity, and ease of modification. Brad Cox discusses the
concept of using object-oriented programming to develop reusable software integrated circuits, Software-
ICs (Cox, Brad J., Obieet Oriented Pro2rammin_,: An Evolutionary Avm'oach. Addison-Wesley, 1986). A
commercially available product from Apple Computer called MacApp (Doyle, Ken, Wallace, Scott, and
Rosenstein, Larry, MacApprU: An Object-Oriented Application Framework, A_mpleReport No. 4, Apple
Computer, Inc., September 1986.) provides a highly reusable object oriented framework to implement the
standard Macintosh interface, reducing both the time and amount of code needed to build applications.



Connectivityalgorithms find paths between
components. For fault isolation on the Goddatd

LACN the main algorithm is a simple depth first

search (loops are not allowed in the network)

along connections that support the protocols of

the machines being tested. Another algorithm
would be used to find "backroads" between

equipment. An example would be to use a

modem to bypass default network components to

check the status of a computer. For other LACN
configurations (e.g., a network that allowed

loops), programmers could use the object-oriented

capability of overriding methods to customize the
algorithms.

The functions of the expert system layer are fault

other network object types. Each subsequent
child node or subclass, therefore, inherits methods

and fields from TComponent This, for example,

allows defaults to initially be set up in
TComponent and later customized in subclasses

as required. Some of the classes along with their
methods and fields are discussed below. A more

detailed design is currently under development.

TComponent has a field, fSubcomponents, which

can be used to define TComponent objects as
abstract entities such as a network or computer
that can be broken down into its

fSubcomponents. A polling method is then

defined to poll these subcomponents. Another

field, fConnectedTo, is a list of components that

TComponent

TDevice TPort TWire

TPassthrough

TAppIitTk e peaT::ansceiver

TActive

TMultiplexor

TBridgebox

TComputer

I
TDecnetDevice

Figure 5 -- Object

isolation, component monitor/polling, graphical

and text fault notification, and explanations.
Fault isolation is provided by both high-level and
low-level methods and heuristics. Monitor and

polling methods provide the capability to

continuously monitor specified components or

request an instantaneous diagnosis. Explanations

and fault notification are built upon the user
interface of the graphical editor.

Object Hierarchy

Each of these layers are built within the object

hierarchy shown in Figure 5. The top node,

TComponent, is the parent or superclass of all the

Hierarchy

the TComponent object is connected with.

TDevice, TPort, and TWire, are major subclasses
of TComponent and def'me high-level information

and knowledge. The TPassthroughDevice class is

for devices that act as information relays and are
essentially transparent to other devices on the

network. During fault isolation, the up/down
status for devices in this class would have to be

based on the ability of TActiveDevice objects to

communicate through the TPassthroughDevice

object. The TActiveDevice objects can be

communicated with directly to determine up/down

status. The bottom nodes of the hierarchy
(TApplitek, TMultiplexor, etc.) contain the most

network specific information and knowledge and -.,j

4



is where most modifications and additions will

place.

Future

Currently a detailed design of the framework is
under progress. In addition, a number of

potential application areas are being explored.
Once one is chosen, the hardware and software to

implement the framework will be selected.
Currently a variety of object-oriented
programming languages (C++, Objective-C,
Object Pascal, SmaUTalk, LISP Flavors, ART
3.0) which exist on a number of machines are
being considered.

When the LANES framework is complete, it

should be applicable to a variety of LACN fault
isolation problems. It could even be expanded
to handle LACN design and performance

analysis.

I suspect that fault isolation will not be the only
area where frameworks are built. Hopefully we

will see a number of frameworks being built to

handle other expert system areas such as
scheduling, planning, control. What will be key
to their success, however, will not just be
functionality, but ease of modification and

expansion. Object-oriented programming will
play a large part in that success.

-"N/



_ J_j


